Giáo dụcLớp 7

Toán 7 Bài 1: Tỉ lệ thức – Dãy tỉ số bằng nhau

Giải bài tập SGK Toán 7 Tập 2 trang 6, 7, 8, 9, 10 sách Chân trời sáng tạo giúp các em học sinh lớp 7 xem gợi ý giải các bài tập của Bài 1: Tỉ lệ thức – Dãy tỉ số bằng nhau.

Thông qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 1 Chương 6 – Các đại lượng tỉ lệ trong sách giáo khoa Toán 7 Tập 2 Chân trời sáng tạo. Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án cho học sinh của mình theo chương trình mới. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của PPE.edu.vn nhé:

Bạn đang xem: Toán 7 Bài 1: Tỉ lệ thức – Dãy tỉ số bằng nhau

Giải Toán 7 Chân trời sáng tạo trang 10 tập 2

Bài 1

Tìm các tỉ số bằng nhau trong các tỉ số sau đây rồi lập các tỉ lệ thức:

7:21; \frac{1}{5}:\frac{1}{2}; \frac{1}{4}:\frac{3}{4}; 1,1:3,2; 1:2,5

Gợi ý đáp án:

Ta có: \frac{1}{5}:\frac{1}{2} = 1:2,5, nên ta có tỉ lệ thức: \frac{1}{5}:\frac{1}{2} = 1:2,5 hay \frac{2}{5}=\frac{1}{2,5}

Có: 7 : 21 = \frac{1}{4}:\frac{3}{4}, nên có tỉ lệ thức: 7 : 21 = \frac{1}{4}:\frac{3}{4}, hay \frac{7}{21} = \frac{1}{3}.

Bài 2

Lập tất cả các tỉ lệ thức có thể được từ đẳng thức sau:

a) 3.(-20)=(-4).15

b) 0,8 . 8,4 = 1,4 . 4,8.

Gợi ý đáp án:

a) \frac{3}{-4}=\frac{15}{-20}

\frac{3}{15}=\frac{-4}{-20}

\frac{-20}{-4}=\frac{15}{3}

\frac{-20}{15}=\frac{-4}{3}

b) \frac{0,8}{1,4}=\frac{4,8}{8,4}

\frac{0,8}{4,8}=\frac{1,4}{8,4}

\frac{8,4}{4,8}=\frac{1,4}{0,8}

\frac{8,4}{1,4}=\frac{4,8}{0,8}

Bài 3

Tìm hai số x, y biết rằng:

a.\frac{x}{4}=\frac{y}{7} và x+y=55

b. \frac{x}{8}=\frac{y}{3} và x-y=35

Gợi ý đáp án:

a) \frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{55}{11}=5

=> x = 5.4 = 20;

y = 5. 7 = 35.

b) \frac{x}{8}=\frac{y}{3}=\frac{x-y}{8-3}=\frac{35}{5}=7

=> x = 7. 8 = 56;

y = 7. 3 =21.

Bài 4

a. Tìm hai số a, b biết rằng 2a = 5b và 3a + 4b = 46

b. Tìm ba số a, b, c biết rằng a : b : c = 2 : 4 : 5 và a + b – c = 3

Gợi ý đáp án:

a) Ta có: 2a = 5b

=> \frac{a}{5}=\frac{b}{2}

Lại có: \frac{a}{5}=\frac{3a}{15}; \frac{b}{2}= \frac{4b}{8}

=> \frac{3a}{15} = \frac{4b}{8} = \frac{3a+4b}{15+8} = \frac{46}{23}=2

=> 3a = 2. 15 = 30 => a = 10

4b = 2. 8 = 16 => b = 4.

b) a : b : c = 2 : 4 : 5

=> \frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b-c}{2+4-5}=\frac{3}{1}=3

=> a = 2. 3 = 6

b = 4. 3 = 12

c = 5. 3 = 15

Bài 5

Tính diện tích của hình chữ nhật có chu vi là 28cm và độ dài hai cạnh tỉ lệ với các số 3; 4.

Gợi ý đáp án:

Gọi a, b là kích thước của hình chữ nhật. (a, b \in \mathbb{N}).

+ Chu vi hình chữ nhật là: 2.(a + b) = 28

=> a + b = 14.

+ Độ dài hai cạnh tỉ lệ với 3; 4 nên có: \frac{a}{3}=\frac{b}{4}

=> \frac{a}{3}=\frac{b}{4}= \frac{a+b}{3+4}=\frac{14}{7}=2

=> a = 3. 2 = 6; b = 4.2 = 8

Diện tích hình chữ nhật đó là : 8.6 = 48 (cm2).

Bài 6

Tại một xí nghiệp may, trong mỗi giờ cả ba tổ A, B, C làm được tổng cộng 60 sản phẩm. Cho biết số sản phẩm làm được của ba tổ A, B, C tỉ lệ với các số 3, 4, 5. Hỏi mỗi tổ làm được bao nhiêu sản phẩm trong 1 giờ.

Gợi ý đáp án:

Gọi số sản phẩm tổ A, B, C làm được trong 1 giờ lần lượt là a, b, c (a, b, c\in \mathbb{N})

Theo đề bài ta có: \frac{a}{3}=\frac{b}{4}=\frac{c}{5} và a + b + c = 60

=> \frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5

=> a = 3. 5 = 15; b = 4. 5 = 20; c = 5. 5 = 25.

Vậy tổ A làm được 15 sản phẩm, tổ B làm được 20 sản phẩm, tổ C làm được 25 sản phẩm.

Bài 7

Một công ty có ba chi nhánh là A, B, C. Kết quả kinh doanh trong tháng vừa qua ở các chi nhánh A và B có lãi còn chi nhánh C lỗ. Cho biết số tiền lãi, lỗ của ba chi nhánh tỉ lệ với các số 3, 4, 2. Tìm số tiền lãi, lỗ của mỗi chi nhánh trong tháng vừa qua, biết rằng trong tháng đó công ty lãi được 500 triệu đồng.

Gợi ý đáp án:

Gọi số tiền lãi của các chi nhanh A, B lần lượt là: a, b; số tiền lỗ của chi nhánh C là c. (a, b, c > 0

Theo đề bài ta có: \frac{a}{3}=\frac{b}{4}=\frac{c}{2} và a + b – c = 500.

=> \frac{a}{3}=\frac{b}{4}=\frac{c}{2}= \frac{a+ b-c}{3+4-2}=\frac{500}{5}=100

=> a = 3. 100 = 300; b = 4.100 = 400; c = 2.100 = 200.

Vậy chi nhánh A lãi 300 triệu, chi nhánh B lãi 500 triệu, chi nhánh C lỗ 200 triệu.

Bài 8

Chứng minh rằng từ tỉ lệ thức \frac{a}{b}=\frac{c}{d} ta suy ra được các tỉ lệ thức sau:

a) \frac{a+b}{b} = \frac{c+d}{d}

b) \frac{a-b}{b} = \frac{c-d}{d}

c)\frac{a}{a+b} = \frac{c}{c+d} (các mẫu số phải khác 0).

Gợi ý đáp án:

a) \frac{a}{b} = \frac{c}{d}

=> \frac{a}{b}+1 = \frac{c}{d}+1

=> \frac{a}{b}+\frac{b}{b} = \frac{c}{d}+\frac{d}{d}

=> \frac{a+b}{b} = \frac{c+d}{d}

Vậy \frac{a+b}{b} = \frac{c+d}{d}.

b) \frac{a}{b} = \frac{c}{d}

=> \frac{a}{b}-1 = \frac{c}{d}-1

=> \frac{a}{b}-\frac{b}{b} = \frac{c}{d}-\frac{d}{d}

=> \frac{a-b}{b} = \frac{c-d}{d}

Vậy \frac{a-b}{b} = \frac{c-d}{d}.

c)

+ Với trường hợp a = c = 0 thì biểu thức \frac{a}{a+b} = \frac{c}{c+d} luôn đúng (các mẫu số phải khác 0).

+ Với trường hợp a, c\neq 0 thì ta chứng minh: \frac{a+b}{a} = \frac{c+d}{c}

\frac{a}{b}=\frac{c}{d} nên \frac{b}{a} = \frac{d}{c}

Theo tính chất chứng minh ở câu a có: \frac{a+b}{a} = \frac{c+d}{c}

=> \frac{a}{a+b} = \frac{c}{c+d}.

Vậy \frac{a}{a+b} = \frac{c}{c+d} (các mẫu số phải khác 0).

Đăng bởi: PPE.Edu.vn

Chuyên mục: Giáo dục, Lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button