Giáo dụcLớp 7

Toán 7 Bài 6: Dãy tỉ số bằng nhau

Giải Toán 7 Bài 6: Dãy tỉ số bằng nhau sách Cánh diều là tài liệu vô cùng hữu ích giúp các em học sinh lớp 7 có thêm nhiều gợi ý tham khảo để giải các bài tập từ 1→7 trang 58.

Giải SGK Toán 7 bài 6 chương 2 Số thực giúp các em tham khảo phương pháp giải toán, những kinh nghiệm trong quá trình tìm tòi ra lời giải. Giải bài tập Toán 7 trang 58 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài, đồng thời là tư liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh học tập.

Bạn đang xem: Toán 7 Bài 6: Dãy tỉ số bằng nhau

Giải Toán 7 trang 58 Cánh diều – Tập 1

Bài 1

Cho tỉ lệ thức \frac{x}{7} = \frac{y}{2}. Tìm hai số x,y biết:

a) x + y = 18;

b) x – y = 20

Gợi ý đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) \frac{x}{7} = \frac{y}{2} = \frac{{x + y}}{{7 + 2}} = \frac{{18}}{9} = 2

Vậy x = 7 . 2 = 14; y = 2.2 = 4

b) \frac{x}{7} = \frac{y}{2} = \frac{{x - y}}{{7 - 2}} = \frac{{20}}{5} = 4

Vậy x = 7.4 = 28; y = 2.4 = 8

Bài 2

Cho dãy tỉ số bằng nhau \frac{x}{3} = \frac{y}{4} = \frac{z}{5}. Tìm ba số x,y,z biết:

a) x+y+z = 180; b) x + y – z = 8

Gợi ý đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) \frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15

Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75

b) \frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4

Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20

Bài 3

Cho ba số x,y,z sao cho \frac{x}{3} = \frac{y}{4};\frac{y}{5} = \frac{z}{6}

a) Chứng minh:\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}

b) Tìm ba số x, y, z biết x – y + z = – 76

Gợi ý đáp án

a) Ta có:

\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}

Vậy \frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

Bài 4

Lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng tỉ lệ với hai số 11 và 8. Tính lượng khí carbon đioxide và lượng oxygen mà 1 m2 lá cây đã thu vào và thải ra môi trường khi quang hợp trong 11 giờ ở ngoài trời nắng, biết lượng khí carbon đioxide lá cây thu vào nhiều hơn lượng oxygen lá cây thải ra môi trường là 8 g.

Áp dụng tính chất của dãy tỉ số bằng nhau

Gợi ý đáp án

Gọi lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là x,y (g) (x,y > 0)

Vì lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng tỉ lệ với 11 và 8 nên \frac{x}{{11}} = \frac{y}{8}

Mà khí carbon đioxide lá cây thu vào nhiều hơn lượng oxygen lá cây thải ra môi trường trong 11 giờ là 8 g nên x – y = 8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\begin{array}{l}\frac{x}{{11}} = \frac{y}{8} = \frac{{x - y}}{{11 - 8}} = \frac{8}{3}\\ \Rightarrow x = 11.\frac{8}{3} = \frac{{88}}{3}\\y = 8.\frac{8}{3} = \frac{{64}}{3}\end{array}

Vậy lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là \frac{{88}}{3}g;\frac{{64}}{3}g

Bài 5

Một mảnh vườn có dạng hình chữ nhật với tỉ số giữa độ dài hai cạnh của nó bằng \frac{3}{5} và chu vi bằng 48 m . Tính diện tích của mảnh vườn đó.

Gợi ý đáp án

Gọi độ dài 2 cạnh hình chữ nhật là x ,y (m) (x, y > 0)

Vì tỉ số giữa độ dài hai cạnh của nó bằng \frac{3}{5} nên \frac{x}{y} = \frac{3}{5} \Rightarrow \frac{x}{3} = \frac{y}{5}

Vì chu vi của mảnh đất là 48 m nên 2.(x+y) = 48 nên x + y = 48:2= 24

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\begin{array}{l}\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{24}}{8} = 3\\ \Rightarrow x = 3.3 = 9;y = 5.3 = 15\end{array}

Vậy diện tích hình chữ nhật là: S = 9.15 = 135 (m2)

Bài 6

Trong đợt quyên góp ủng hộ các bạn vùng lũ lụt, số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8. Tính số sách cả ba lớp đã quyên góp, biết số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển.

Gợi ý đáp án

Gọi số sách 3 lớp 7A,7B,7C quyên góp được là x,y,z (quyển) (x,y,z \in \mathbb{N}*)

Vì số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8 nên \frac{x}{5} = \frac{y}{6} = \frac{z}{8}

Mà số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển nên z – x = 24

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\begin{array}{l}\frac{x}{5} = \frac{y}{6} = \frac{z}{8} = \frac{{z - x}}{{8 - 5}} = \frac{{24}}{3} = 8\\ \Rightarrow x = 5.8 = 40;y = 6.8 = 48;z = 8.8 = 64\end{array}

Vậy số sách 3 lớp 7A,7B,7C quyên góp được lần lượt là 40 quyển; 48 quyển và 64 quyển.

Bài 7

Trên quần đảo Trường Sa của Việt Nam, cây phong ba, cây bàng vuông, cây mù u là những loại cây có sức sống mãnh liệt, chịu đựng được tàn phá của thiên nhiên, biển mặn và có thời gian sinh trưởng lâu. Nhân ngày Tết trồng cây, các chiến sĩ đã trồng tổng cộng 192 cây phong ba, cây bàng vuông, cây mù u trên các đảo. Số cây phong ba, cây bàng vuông, cây mù u đã trồng tỉ lệ với ba số 5;4;3. Tính số cây các chiến sĩ đã trồng mỗi loại.

Gợi ý đáp án

Gọi số cây phong ba, cây bàng vuông, cây mù u đã trồng được là x,y,z (cây) (x,y,z \in \mathbb{N}*)

Vì tổng số cây đã trồng được là 192 cây nên x + y + z = 192

Mà số cây phong ba, cây bàng vuông, cây mù u đã trồng tỉ lệ với ba số 5;4;3 nên \frac{x}{5} = \frac{y}{4} = \frac{z}{3}

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\begin{array}{l}\frac{x}{5} = \frac{y}{4} = \frac{z}{3} = \frac{{x + y + z}}{{5 + 4 + 3}} = \frac{{192}}{{12}} = 16\\ \Rightarrow x = 5.16 = 80;y = 4.16 = 64;z = 3.16 = 48\end{array}

Vậy số cây phong ba, cây bàng vuông, cây mù u đã trồng được lần lượt là: 80 cây, 64 cây và 48 cây

Đăng bởi: PPE.Edu.vn

Chuyên mục: Giáo dục, Lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button