Giáo dụcLớp 7

Toán 7 Luyện tập chung trang 58

Toán 7 Luyện tập chung giúp các em tham khảo, để giải các bài tập SGK Toán 7 Tập 1 trang 58 sách Kết nối tri thức với cuộc sống. Qua đó, các em học sinh lớp 7 sẽ nắm thật chắc phương pháp giải, cũng như lời giải chi tiết các bài tập thật tốt.

Với lời giải chi tiết, trình bày khoa học sẽ giúp các em ngày càng học tốt môn Toán 7, để đạt kết quả trong các bài thi, bài kiểm tra sắp tới. Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án cho học sinh của mình theo chương trình mới. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:

Bạn đang xem: Toán 7 Luyện tập chung trang 58

Giải Toán 7 Kết nối tri thức với cuộc sống trang 58 tập 1

Bài 3.27

Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó.

Gợi ý đáp án:

Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \widehat B + \widehat C = 180^\circ (2 góc trong cùng phía)

Mặt khác:

\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}

Bài 3.28

Vẽ hình minh họa và viết giả thiết, kết luận của định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”.

Gợi ý đáp án:

Bài 3.28

Bài 3.29

Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d (H 3.48). Chứng minh rằng hai tia phân giác đó nằm cùng trên hai đường thẳng song song.

Bài 3.29

Gợi ý đáp án:

Bài 3.29

Vì Ax là tia phân giác của góc A vuông nên \widehat {{A_1}} = \widehat {{A_2}} = \frac{1}{2}.90^\circ = 45^\circ

Vì By là tia phân giác của góc B vuông nên \widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}.90^\circ = 45^\circ

\widehat {{A_2}} = \widehat {{B_2}}( = 45^\circ ), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết hai đường thẳng song song)

Bài 3.30

Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác khác c và d vuông góc với a. Chứng minh rằng:

a) a // b

b) c // d

c) b ⊥ d

Gợi ý đáp án:

Bài 3.30

a) Vì c \bot a;c \bot b \Rightarrow a//b (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

b) Vì a \bot c;a \bot d \Rightarrow c//d (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

c) Vì b \bot c;c//d \Rightarrow b \bot c (đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)

Bài 3.31

Cho hình 3.49. Chứng minh rằng:

Hình 3.49

a) d // BC

b) d ⊥ AH

c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?

Gợi ý đáp án:

Giải thiết

AH vuông góc với BC,

Kết luận

a) d // BC

b) d ⊥ AH

c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?

Chứng minh

a) Theo bài ra ta có:

\widehat {dAC} = \widehat {ACB} = {50^0}

Mà hai góc \widehat {dAC};\widehat {ACB} nằm ở vị trí hai góc so le trong

=> Đường thẳng d song song với BC

=> d // BC.

b) Theo chứng minh câu a ta có:

d // BC

Mặt khác BC ⊥ AH

=> d ⊥ AH

Vậy d ⊥ AH

c) Xét hai kết luận ở trên ta thấy:

Kết luận a) d // BC được suy ra từ dấu hiệu nhận biết hai đường thẳng song song.

Kết luận b) d ⊥ AH được suy ra từ tính chất của hai đường thẳng song song.

Đăng bởi: PPE.Edu.vn

Chuyên mục: Giáo dục, Lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button